ANTENNA THEORY AND DESIGN BY GARY ..........DOWNLOAD
Highly respected authors have reunited to update the well known 1981 edition which is still hailed as one of the best in its field. This edition includes recent antenna innovations and applications. It features a succinct treatment of the finite difference, time domain (FDTD) computational technique. It is also the first text to treat physical theory of diffraction (PTD).
Highly respected authors have reunited to update the well known 1981 edition which is still hailed as one of the best in its field. This edition includes recent antenna innovations and applications. It features a succinct treatment of the finite difference, time domain (FDTD) computational technique. It is also the first text to treat physical theory of diffraction (PTD).
Table of Contents:
Chapter 1 • Antenna
Fundamentals and Definitions
1.1 Introduction 1
1.2 How Antennas Radiate 4
1.3 Overview of Antennas 8
1.4 Electromagnetic Fundamentals
12
1.5 Solution of Maxwell's
Equations for Radiation Problems 16
1.6 The Ideal Dipole 20
1.7 Radiation Patterns 24
1.7.1 Radiation Pattern Basics 24
1.7.2 Radiation from Line Currents
25
1.7.3 Far-Field Conditions and
Field Regions 28
1.7.4 Steps in the Evaluation of
Radiation Fields 31
1.7.5 Radiation Pattern
Definitions 33
1.7.6 Radiation Pattern Parameters
35
1.8 Directivity and Gain 37
1.9 Antenna Impedance, Radiation
Efficiency, and the Short Dipole 43
1.10 Antenna Polarization 48
References 52
Problems 52
Chapter 2 • Some Simple
Radiating Systems and Antenna Practice
2.1 Electrically Small Dipoles 56
2.2 Dipoles 59
2.3 Antennas Above a Perfect
Ground Plane 63
2.3.1 Image Theory 63
2.3.2 Monopoles 66
2.4 Small Loop Antennas 68
2.4.1 Duality 68
2.4.2 The Small Loop Antenna 71
2.5 Antennas in Communication
Systems 76
2.6 Practical Considerations for
Electrically Small Antennas 82
References 83
Problems 84
Chapter 3 • Arrays
3.1 The Array Factor for Linear
Arrays 88
3.2 Uniformly Excited, Equally
Spaced Linear Arrays 99
3.2.1 The Array Factor Expression
99
3.2.2 Main Beam Scanning and
Beamwidth 102
3.2.3 The Ordinary Endfire Array
103
3.2.4 The Hansen-Woodyard Endfire
Array 105
3.3 Pattern Multiplication 107
3.4 Directivity of Uniformly
Excited, Equally Spaced Linear Arrays 112
3.5 Nonuniformly Excited, Equally
Spaced Linear Arrays 116
3.6 Mutual Coupling 121
3.6.1 Impedance Effects of Mutual
Coupling 122
3.6.2 Array Pattern Evaluation
Including Mutual Coupling 125
3.7 Multidimensional Arrays 128
3.8 Phased Arrays and Array
Feeding Techniques 130
3.8.1 Scan Principles 130
3.8.2 Feed Networks for Beam
Scanning 133
3.8.3 Scan Blindness 135
3.9 Perspective on Arrays 136
References 136
Problems 137
Chapter 4 • Line Sources 143
4.1 The Uniform Line Source 143
4.2 Tapered Line Sources 152
4.3 Fourier Transform Relations Between
the Far-Field Pattern and the Source Distribution 157
4.4 Superdirective Line Sources
159
References 163
Problems 163
Chapter 5 • Resonant
Antennas: Wires and Patches
5.1 Dipole Antennas 165
5.1.1 Straight Wire Dipoles 165
5.1.2 The Vee Dipole 173
5.2 Folded Dipole Antennas 175
5.3 Feeding Wire Antennas 180
5.4 Yagi-Uda Antennas 187
5.5 Comer Reflector Antennas 196
5.6 Wire Antennas Above an
Imperfect Ground Plane 198
5.6.1 Pattern Effects of a Real
Earth Ground Plane 198
5.6.2 Ground Plane Construction
203
5.7 Large Loop Antennas 205
5.8 Microstrip Antennas 210
5.8.1 Microstrip Patch Antennas
210
5.8.2 Microstrip Arrays 216
References 218
Problems 219
Chapter 6 • Broadband
Antennas
6.1 Traveling-Wave Wire Antennas
225
6.2 Helical Antennas 231
6.2.1 Normal Mode Helix Antenna
232
6.2.2 Axial Mode Helix Antenna 235
6.3 Biconical Antennas 240
6.3.1 Infinite Biconical Antenna
240
6.3.2 Finite Biconical Antenna 242
6.3.3 Discone Antenna 243
6.4 Sleeve Antennas 246
6.4.1 Sleeve Monopoles 246
6.4.2 Sleeve Dipoles 248
6.5 Principles of Frequency-Independent
Antennas 250
6.6 Spiral Antennas 252
6.6.1 Equiangular Spiral Antenna
252
6.6.2 Archimedean Spiral Antenna
254
6.6.3 Conical Equiangular Spiral
Antenna 257
6.6.4 Related Configurations 258
6.7 Log-Periodic Antennas 259
References 270
Problems 272
Chapter 7 • Aperture
Antennas
7.1 Radiation from Apertures and
Huygens' Principle 275
7.2 Rectangular Apertures 284
7.2.1 The Uniform Rectangular
Aperture 285
7.2.2 Tapered Rectangular
Apertures 289
7.3 Techniques for Evaluating Gain
291
7.3.1 Directivity 292
7.3.2 Gain and Efficiencies 294
7.3.3 Simple Directivity Formulas
296
7.4 Rectangular Hom Antennas 299
7.4.1 H-Plane Sectoral Hom Antenna
300
7.4.2 E-Plane Sectoral Hom Antenna
306
7.4.3 Pyramidal Hom Antenna 310
7.5 Circular Apertures 316
7.5.1 The Uniform Circular
Aperture 316
7.5.2 Tapered Circular Apertures
319
7.6 Reflector Antennas 322
7.6.1 Parabolic Reflector Antenna
Principles 322
7.6.2 Axisymmetric Parabolic
Reflector Antenna 329
7.6.3 Offset Parabolic Reflectors
334
7.6.4 Dual Reflector Antennas 335
7.6.5 Cross-Polarization and
Scanning Properties of Reflector Antennas 338
7.6.6 Gain Calculations for
Reflector Antennas 342
7.6.7 Other Reflector Antennas 347
7.7 Feed Antennas for Reflectors
349
7.7.1 Field Representations 349
7.7.2 Matching the Feed to the
Reflector 350
7.7.3 A General Feed Model 352
7.7.4 Feed Antennas Used in
Practice 354
References 356
Problems 358
Chapter 8.. Antenna
Synthesis
8.1 The Synthesis Problem 365
8.1.1 Formulation of the Synthesis
Problem 365
8.1.2 Synthesis Principles 367
8.2 Line Source Shaped Beam
Synthesis Methods 368
8.2.1 Fourier Transform Method 368
8.2.2 Woodward-Lawson Sampling
Method 370
8.3 Linear Array Shaped Beam
Synthesis Methods 373
8.3.1 Fourier Series Method 373
8.3.2 Woodward-Lawson Sampling
Method 376
8.3.3 Comparison of Shaped Beam
Synthesis Methods 377
8.4 Low Side-Lobe, Narrow Main
Beam Synthesis Methods 378
8.4.1 Dolph-Chebyshev Linear
Array Method 378
8.4.2 Taylor Line Source Method
384
8.5 Perspective 390
References 390
Problems 391
Chapter 9 • Antennas in Systems and Antenna Measurements
395
9.1 Receiving Properties of
Antennas 395
\ 9.2 Antenna Noise Temperature
and Radiometry 400
9.3 Radar 403
9.4 Reciprocity and Antenna
Measurements 404
9.5 Pattern Measurement and
Antenna Ranges 409
9.6 Gain Measurement 415
9.6.1 Gain Measurement of CP
Antennas 416
9.6.2 Gain Estimation 418
9.7 Polarization Measurement 418
9.7.1 Polarization Pattern Method
419
9.7.2 Spinning Linear Method 420
9.7.3 Dual-Linear Method 421
9.8 Field Intensity Measurements
422
References 423
Problems 424
10 • CEM
for Antennas: The Method of Moments
10:1 Introduction to
Computational Electromagnetics 427
10.2 Introduction to the Method
of Moments 429
10.3 Pocklington's Integral
Equation 430
10.4 Integral Equations and
Kirchhoff's Network Equations 432
10.5 Source Modeling 435
10.6 Weighted Residuals and the
Method of Moments 440
10.7 Two Alternative Approaches
to the Method of Moments 445
10.7.1 Reaction 445
10.7.2 Linear Algebra Formulation
of MoM 447
10.8 Formulation and
Computational Considerations 449
10.8.1 Other Expansion and
Weighting Functions 450
10.8.2 Other Electric Field
Integral Equations for Wires 451
10.8.3 Computer Time
Considerations 454
10.8.4 ToepIitz Matrices 455
10.8.5 Block Toeplitz Matrices
455
10.8.6 Compressed Matrices 456
10.8.7 Validation 457
10.9 Calculation of Antenna and
Scatterer Characteristics 457
10.10 The Wire Antenna or
Scatterer as an N-Port Network 460
10.10.1 Series Connections 460
10.10.2 Parallel Connections 462
10.11 Antenna Arrays 465
10.11.1 The Linear Array 466
10.11.2 The Circular Array 467
10.11.3 Two-Dimensional Planar
Array of Dipoles 470
10.11.4 Summary 471
10.12 Radar Cross Section of
Antennas 472
10.13 Modeling of Solid Surfaces
477
10.13.1 Wire-Grid Model 477
10.13.2 Continuous Surface Model
482
10.14 Summary 487
References 487
Problems 488
Chapter 11 • CEM for
Antennas: Finite Difference Time Domain Method
11.1 Maxwell's Equations for the
FD-TD Method 495
11.1.1 Three-Dimensional Problem
Formulation 496
11.1.2 Two-Dimensional Problem
Formulation 496
11.1.3 One-Dimensional Problem
Formulation 497
11.2 Finite Differences and the
Yee Algorithm 498
11.3 Cell Size, Numerical
Stability, and Dispersion 505
11.4 Computer Algorithms and FD-TD
Implementation 508
11.5 Absorbing Boundary Conditions
511
11.6 Source Conditions 515
11.6.1 Source Functionality 515
11.6.2 The Hard Source 517
11.6.3 The Soft Source 517
11.6.4 Total-FieldlScattered-Field
Formulation 519
11.6.5 Pure Scattered-Field
Formulation 522
11.7 Near Fields and Far Fields
522
11.8 A Two-Dimensional Example: An
E-Plane Sectoral Horn Antenna 524
11.9 Antenna Analysis and
Applications 531
11.9.1 Impedance, Efficiency, and
Gain 532
11.9.2 The Monopole over a PEC
Ground Plane 533
11.9.3 The Vivaldi Slotline Array
538
11.10 Summary 542
References 542
Problems 543
493
Chapter 12 • CEM for
Antennas: High-Frequency Methods 545
12.1 GeometricalOptics 546
12.2 Wedge Diffraction Theory 552
12.3 The Ray-Fixed Coordinate
System 561
12.4 A Uniform Theory of Wedge
Diffraction 564
12.5 E-Plane Analysis of Horn
Antennas 568
12.6 Cylindrical Parabolic Antenna
571
12.7 Radiation by a Slot on a
Finite Ground Plane 574
12.8 Radiation by a Monopole on a
Finite Ground Plane 577
12.9 Equivalent Current Concepts
578
12.10 A Multiple Diffraction
Formulation 581
12.11 Diffraction by Curved
Surfaces 584
12.12 Extension of Moment Methods
Using the Geometrical Theory of Diffraction 589
12.13 Physical Optics 597
12.14 Method of Stationary Phase
601
12.15 Physical Theory of
Diffraction 604
12.16 Cylindrical Parabolic
Reflector Antenna-PTD 610
12.17 Summary 612
References 613
Problems 614
xvi Contents
Appendix A • Tables of
Commonly Used Frequencies 621
A.1 Radio Frequency Bands 621
A.2 Television Channel Frequencies
621
A.3 Mobile Telephone Bands 622
A.4 Radar Bands 622
Appendix B • Data Material
and Other Constants 623
B.1 Conductivities of Good
Conductors 623
B.2 Wire Data 623
B.3 Dielectric Constant: Permittivity
624
BA Permeability 624
B.5 Velocity of Light 624
B.6 Intrinsic Impedance of Free
Space 624
Appendix C • Vectors 625
C.1 Unit Vector Representations
625
C.2 Vector Identities 625
C.3 Vector Differential Operators
626
Appendix D • Trigonometric
Relations 628
Appendix E • Hyperbolic
Relations 630
Appendix F • Useful
Mathematical Relations 631
F.1 Dirac Delta Function 631
F.2 Binomial Theorem 631
F.3 Bessel Functions 631
FA Some Useful
Integrals 632
Appendix G • Computing
Packages 633
G.1 General Antenna Pagkage: APV
633
G.2 Array Plotting Package:
PCARRPAT 633
G.3 Wire Antenna Code: WIRE 634
GA Parabolic
Reflector Antenna Code: PRAC 634
G.5 Diffraction Codes 634
Appendix H • Bibliography 636
Index 643
No comments:
Post a Comment